Busca avançada
Ano de início
Entree


Direção autônoma: apredendo a tomar decisões na presença de incertezas

Texto completo
Autor(es):
Júnior Anderson Rodrigues da Silva
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Data de defesa:
Membros da banca:
Denis Fernando Wolf; Reinaldo Augusto da Costa Bianchi; Diego Furtado Silva; Adriano Almeida Gonçalves Siqueira
Orientador: Denis Fernando Wolf
Resumo

Um veículo que navega em um ambiente urbano deve obedecer às regras de trânsito, definindo corretamente sua velocidade para ficar abaixo do limite de velocidade da estrada e evitar colisões. Este é presumivelmente o cenário que os veículos autônomos enfrentarão: eles compartilharão as vias de tráfego com outros veículos (autônomos ou não), interagindo cooperativamente com eles. Em outras palavras, os veículos autônomos não devem apenas seguir as regras de trânsito, mas também devem se comportar de maneira semelhante a outros veículos. Porém, a especificação manual de tal comportamento é um trabalho demorado e sujeito a erros, visto que dirigir em vias urbanas é uma tarefa complexa, que envolve diversos fatores. Além disso, uma vez que a interação entre os veículos é inerente à condução, inferir o movimento dos veículos ao redor é essencial para proporcionar uma navegação mais fluida, evitando um comportamento excessivamente reativo. Nesse sentido, incertezas provenientes de sensores com algum grau de imprecisão, como também do comportamento desconhecido de outros veículos não podem ser negligenciadas de forma a garantir tomadas de decisão seguras e confiáveis. Nesta tese, propomos o uso do Processo de Decisão de Markov Parcialmente Observável (POMDP) para resolver o problema de informação incompleta inerente ao planejamento de movimento para veículos autônomos. Também propomos uma variante do Aprendizagem por Reforço Inverso (IRL) baseado no princípio da Entropia Máxima para aprender o comportamento de motoristas humanos a partir de demonstrações. Três diferentes cenários urbanos são abordados ao longo deste trabalho: planejamento longitudinal em cruzamentos com semáforo considerando medições ruidosas de sensores; planejamento longitudinal e lateral em vias de múltiplas faixas na presença de outros veículos, em que a intenção dos mesmos de mudar de faixa é inferida a partir de uma sequência de observações; planejamento longitudinal e lateral durante manobras para adentrar vias movimentadas em um cenário altamente interativo, no qual o comportamento do veículo autônomo é aprendido a partir de dados reais contendo demonstrações humanas. Os resultados mostram que nossos métodos se comparam favoravelmente a abordagens que negligenciam a incerteza durante o planejamento, e também podem melhorar o desempenho do aprendizado por IRL, o que agrega segurança e confiabilidade na tomada de decisão. (AU)

Processo FAPESP: 18/19732-5 - Tomada de decisão e planejamento de trajetória para veículos inteligentes utilizando processos de decisão de Markov parcialmente observáveis e aprendizado por reforço inverso
Beneficiário:Júnior Anderson Rodrigues da Silva
Modalidade de apoio: Bolsas no Brasil - Doutorado