Busca avançada
Ano de início
Entree


Introdução à Homologia de Interseção

Texto completo
Autor(es):
Hana Marinho Lucena
Número total de Autores: 1
Tipo de documento: Dissertação de Mestrado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Data de defesa:
Membros da banca:
Nivaldo de Góes Grulha Junior; Thaís Maria Dalbelo; Denise de Mattos; Thiago de Melo
Orientador: Nivaldo de Góes Grulha Junior
Resumo

As Teorias de Homologia e Cohomologia constituem conceitos fundamentais na Topologia Algébrica, com o propósito de distinguir e estabelecer relações entre espaços topológicos. Suas aplicações, tanto dentro quanto fora da Matemática, são vastas. Um dos resultados mais notáveis que conecta essas teorias é a famosa Dualidade de Poincaré. Esta dualidade permite estabelecer isomorfismos entre grupos de homologia e cohomologia, proporcionando uma compreensão profunda da topologia dos espaços. Contudo, é importante ressaltar que a validade da Dualidade de Poincaré, em geral, está condicionada à ausência de singularidades na estrutura topológica do espaço estudado. Quando o espaço em questão apresenta singularidades, a Dualidade de Poincaré não se aplica de maneira universal. Em 1974, Mark Goresky e Robert MacPherson desenvolveram uma Teoria de Homologia e Cohomologia específica para lidar com casos singulares, conhecida como Homologia de Interseção. Essa abordagem permite capturar informações relevantes das contribuições das singularidades, ampliando o escopo de aplicação dessas teorias. Neste trabalho, exploramos a teoria de homologia e cohomologia, apresentamos a Dualidade de Poincaré e, por fim, abordamos as definições, resultados e exemplos básicos da homologia de interseção. Por exemplo, introduzimos uma adaptação da Dualidade de Poincaré no contexto singular. Assim, oferecemos uma breve introdução a essa teoria, com exemplos e sua relação com a homologia clássica. (AU)

Processo FAPESP: 22/10020-8 - Introdução à Homologia de Interseção
Beneficiário:Hana Marinho Lucena
Modalidade de apoio: Bolsas no Brasil - Mestrado