Busca avançada
Ano de início
Entree


Processos dinâmicos em redes complexas

Texto completo
Autor(es):
David Dobrigkeit Chinellato
Número total de Autores: 1
Tipo de documento: Dissertação de Mestrado
Imprenta: Campinas, SP.
Instituição: Universidade Estadual de Campinas (UNICAMP). Instituto de Física Gleb Wataghin
Data de defesa:
Membros da banca:
Marcus Aloizio Martinez de Aguiar; Fernando Cerdeira; José Fernando Fontanari
Orientador: Marcus Aloizio Martinez de Aguiar
Resumo

Nesta tese, estudamos as propriedades estatísticas de processos dinâmicos de influência em redes complexas sujeitas a perturbações externas. Consideramos redes cujos nós admitem dois estados internos, digamos 0 e 1. Os estados internos se alteram de acordo com os estados dos nós vizinhos. Supomos que há N1 nós com estado interno fixo em 1, N0 elementos com estado interno fixo em 0 e outros N elementos com estado interno livre. Os nós com estado interno ½xo podem ser interpretados como perturbações externas à subrede de N elementos livres. Este sistema é uma generalização do modelo do eleitor [25] e pode descrever diversas situações interessantes, indo de sistemas sociais [26] para a física e a genética. Neste trabalho, calcularemos analiticamente a evolução de um sistema de rede totalmente conectada, obtendo expressões para as distribuições de equilíbrio de uma rede qualquer e também de todas as probabilidades de transição. Em seguida, generalizamos os resultados para o caso em que N0 e N1 são menores do que 1, representando um acoplamento fraco do sistema com um reservatório externo. Mostramos que os resultados exatos são excelentes aproximações para várias outras redes, incluindo redes aleatórias, reticuladas, livres de escala, estrela e mundo pequeno, e estudamos a dinâmica destas outras redes numericamente. Finalmente, demonstramos que, se os dois parâmetros da solução para redes totalmente conectadas, N0 e N1, forem alterados para valores efetivos para cada tipo de rede específico, o nosso resultado analítico explica satisfatoriamente todas as dinâmicas e estados assintóticos de outras topologias. O nosso modelo é portanto bastante geral, se aplicado cuidadosamente (AU)

Processo FAPESP: 05/51223-3 - Processos dinamicos em redes complexas.
Beneficiário:David Dobrigkeit Chinellato
Modalidade de apoio: Bolsas no Brasil - Mestrado