Uma abordagem algébrica-topológica para sistemas dinâmicos e topologia simplética
Sequências espectrais no estudo de fluxos de Morse-Bott e Morse-Novikov
![]() | |
Autor(es): |
Naiara Vergian de Paulo
Número total de Autores: 1
|
Tipo de documento: | Dissertação de Mestrado |
Imprenta: | Campinas, SP. |
Instituição: | Universidade Estadual de Campinas (UNICAMP). Instituto de Matemática, Estatística e Computação Científica |
Data de defesa: | 2010-03-15 |
Membros da banca: |
Ketty Abaroa de Rezende;
Marco Antonio Feixeira;
Mariana Rodrigues da Silveira
|
Orientador: | Ketty Abaroa de Rezende |
Resumo | |
O objetivo deste trabalho é apresentar a matriz de conexão, estabelecendo um paralelo entre as abordagens contínua e discreta. O índice homológico de Conley, principal elemento para a definição da matriz de conexão, assume formas distintas quando lidamos com fuxos ou com aplicações contínuas. Tal índice trata-se apenas de um espaço vetorial graduado no caso contínuo, enquanto no caso discreto toma a forma de um par que consiste de um espaço vetorial graduado junto com um isomorfismo. Como consequência, a matriz de conexão para uma decomposição de Morse é definida diferentemente quando consideramos sistemas dinâmicos contínuos ou discretos. No primeiro caso, a matriz de conexão é uma matriz de aplicações lineares entre os índices contínuos homológicos de Conley dos conjuntos de Morse que codifica uma trança de espaços vetoriais graduados, conhecida como trança do índice contínuo homológico. Já no segundo caso, a matriz de conexão é um par de matrizes que têm como entradas aplicações lineares definidas entre os índices discretos homológicos de Conley dos conjuntos de Morse e, agora, este par de matrizes codifica uma trançaa de espaços vetoriais graduados com isomorfismos, chamada trança do índice discreto homológico. Apesar do índice homológico de Conley e da matriz de conexão serem elementos puramente algébricos, ambos são capazes de fornecer informações dinâmicas sobre um fuxo e mais ainda sobre uma aplicação contínua. Especificamente, estes elementos podem detectar a existência de órbitas de conexão entre conjuntos de Morse de um conjunto invariante isolado e exemplos desta situação são apresentados neste trabalho (AU) | |
Processo FAPESP: | 07/57941-0 - Matrizes de conexao numa continuacao. |
Beneficiário: | Naiara Vergian de Paulo |
Modalidade de apoio: | Bolsas no Brasil - Mestrado |