Busca avançada
Ano de início
Entree


Mineração de imagens médicas utilizando características de forma

Texto completo
Autor(es):
Alceu Ferraz Costa
Número total de Autores: 1
Tipo de documento: Dissertação de Mestrado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Data de defesa:
Membros da banca:
Agma Juci Machado Traina; Aparecido Nilceu Marana; Paulo Mazzoncini de Azevedo Marques
Orientador: Agma Juci Machado Traina
Resumo

Bases de imagens armazenadas em sistemas computacionais da área médica correspondem a uma valiosa fonte de conhecimento. Assim, a mineração de imagens pode ser aplicada para extrair conhecimento destas bases com o propósito de apoiar o diagnóstico auxiliado por computador (Computer Aided Diagnosis - CAD). Sistemas CAD apoiados por mineração de imagens tipicamente realizam a extração de características visuais relevantes das imagens. Essas características são organizadas na forma de vetores de características que representam as imagens e são utilizados como entrada para classificadores. Devido ao problema conhecido como lacuna semântica, que corresponde à diferença entre a percepção da imagem pelo especialista médico e suas características automaticamente extraídas, um aspecto desafiador do CAD é a obtenção de um conjunto de características que seja capaz de representar de maneira sucinta e eficiente o conteúdo visual de imagens médicas. Foi desenvolvido neste trabalho o extrator de características FFS (Fast Fractal Stack) que realiza a extração de características de forma, que é um atributo visual que aproxima a semântica esperada pelo ser humano. Adicionalmente, foi desenvolvido o algoritmo de classificação Concept, que emprega mineração de regras de associação para predizer a classe de uma imagem. O aspecto inovador do Concept refere-se ao algoritmo de obtenção de representações de imagens, denominado MFS-Map (Multi Feature Space Map) e também desenvolvido neste trabalho. O MFS-Map realiza agrupamento de dados em diferentes espaços de características para melhor aproveitar as características extraídas no processo de classificação. Os experimentos realizados para imagens de tomografia pulmonar e mamografias indicam que tanto o FFS como a abordagem de representação adotada pelo Concept podem contribuir para o aprimoramento de sistemas CAD (AU)

Processo FAPESP: 09/12905-2 - Mineração de Imagens Médicas Baseada em Recuperação de Imagens por Conteúdo Utilizando Características de Forma
Beneficiário:Alceu Ferraz Costa
Modalidade de apoio: Bolsas no Brasil - Mestrado