Busca avançada
Ano de início
Entree


Espectro de Fuík e equações elípticas com não linearidade de salto

Texto completo
Autor(es):
Rafael Antonio Rossato
Número total de Autores: 1
Tipo de documento: Dissertação de Mestrado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação
Data de defesa:
Membros da banca:
Eugenio Tommaso Massa; Rodrigo da Silva Rodrigues; Sérgio Henrique Monari Soares
Orientador: Eugenio Tommaso Massa
Resumo

Estudamos o Espectro de Fucík para o operador Laplaciano, isto é, o conjunto \'SIGMA\' das duplas (\'mü\', \'nü\') \'ESTA CONTIDO EM\' \'R POT. 2\', tais que o problema { - \'DELTA\' u(x) = \'\'\'mü \'nü\' POT. + (x); \'EPSILON\' \' OMEGA\', Bu = o; x \'EPSILON\' \'PARTIAL\' \' OMEGA\', admita soluções não triviais, onde \'OMEGA \'ESTA CONTIDO EM\' \'R POT. n\' é um domínio limitado, \'u POT +\'(x) = max{0, u(x)}, \' u POT. -\' (x) = f -u (x)} e B representa condições de contorno. Inicialmente apresentamos alguns resultados abstratos sobre o Espectro de Fucík e em seguida o calculamos explicitamente no caso unidimensional para os problemas de Dirichlet e de Neumann. Estes resultados são aplicados ao estudo da solubilidade do problema { - \'DELTA\' u(x) = f(x, u (x)); x \'epsilon\' \'OMEGA\', Bu = 0; x \'epsilon\' \'PARTIAL\' \' OMEGA\', quando a não linearidade f é uma conveniente perturbação de \'mü\'\'u POT. + - \'\'nü\' u+ - \'\'nü\' u POT. n\', descreveremos diferentes comportamentos em função dos parâmetros (\'mü\', \'nü\'). Por fim, consideramos o Espectro de Fucík em dimensão maior. Neste caso não é possível calculá-lo explicitamente, assim apresentamos uma caracterização variacional da sua primeira curva não trivial. Esta caracterização nos permitirá obter várias informações sobre a forma desta curva e também outros resultados sobre a solubilidade de (2) (AU)

Processo FAPESP: 07/06106-4 - Espectro de Fucik e equações elípticas com não linearidades de salto
Beneficiário:Rafael Antônio Rossato
Linha de fomento: Bolsas no Brasil - Mestrado