Efficiency and security of pre and post quantum cryptographic methods: theory and ...
Texto completo | |
Autor(es): |
Número total de Autores: 2
|
Afiliação do(s) autor(es): | [1] Univ Estadual Campinas, IMECC, BR-13083859 Campinas, SP - Brazil
Número total de Afiliações: 1
|
Tipo de documento: | Artigo Científico |
Fonte: | JOURNAL OF NUMBER THEORY; v. 145, p. 51-66, DEC 2014. |
Citações Web of Science: | 9 |
Resumo | |
We characterize certain maximal curves over finite fields defined by equations of type y(n) = x(m) + x. Moreover, we show that a maximal curve over F-q2 defined by the affine equation y(n) = f (x), where f (x) is an element of F-q2 {[}x] is separable of degree coprime to n, is such that n is a divisor of q + 1 if and only if f (x) has a root in F-q2. In this case, all the roots of f (x) belong to F-q2; cf. Theorems 1.2 and 4.3 in Garcia and Tafazolian (2008) {[}9]. (C) 2014 Elsevier Inc. All rights reserved. (AU) | |
Processo FAPESP: | 12/02255-3 - Curvas sobre corpos finitos |
Beneficiário: | Saeed Tafazolian |
Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |