Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Piecewise Linear Systems with Closed Sliding Poly-Trajectories

Texto completo
Autor(es):
de Moraes, Jaime R. [1] ; da Silva, Paulo R. [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] UNESP, IBILCE, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN; v. 21, n. 4, p. 653-684, OCT-DEC 2014.
Citações Web of Science: 0
Resumo

In this paper we study piecewise linear (PWL) vector fields F(x,y) = [ F-+(x,F-y) where x= (x,y) is an element of R-2, F+ (x) = A-Fx b(+) and F- (x) = +, A+ = (at) and A = (a7) are (2 x 2) constant matrices, b+ = (biF,11) E R2 1.1 and b- = (111-, b2-) E IR2 are constant vectors in R2. We suppose that the equilibrium points are saddle or focus in each half-plane. We establish a correspondence between the PWL vector fields and vectors formed by some of the following parameters: sets on E (crossing, sliding or escaping), kind of equilibrium (real or virtual), intersection of manifolds with E, stability and orientation of the focus. Such vectors are called configurations. We reduce the number of configurations by an equivalent relation. Besides, we analyze for which configurations the corresponding PWL vector fields can have or not closed sliding poly-trajectories. (AU)

Processo FAPESP: 10/17956-1 - Conjuntos Minimais de Sistemas Lineares por Partes
Beneficiário:Jaime Rezende de Moraes
Modalidade de apoio: Bolsas no Brasil - Doutorado