Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Multiscale entropy-based methods for heart rate variability complexity analysis

Texto completo
Autor(es):
Virgilio Silva, Luiz Eduardo [1] ; Troca Cabella, Brenno Caetano [2] ; da Costa Neves, Ubiraci Pereira [3] ; Murta Junior, Luiz Otavio [4]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Sch Med Ribeirao Preto, Dept Physiol, Ribeirao Preto, SP - Brazil
[2] SAPRA Assessoria, Sao Carlos, SP - Brazil
[3] Univ Sao Paulo, Dept Phys, FFCLRP, Ribeirao Preto, SP - Brazil
[4] Univ Sao Paulo, FFCLRP, Dept Comp & Math, Ribeirao Preto, SP - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS; v. 422, p. 143-152, MAR 15 2015.
Citações Web of Science: 18
Resumo

Physiologic complexity is an important concept to characterize time series from biological systems, which associated to multiscale analysis can contribute to comprehension of many complex phenomena. Although multiscale entropy has been applied to physiological time series, it measures irregularity as function of scale. In this study we purpose and evaluate a set of three complexity metrics as function of time scales. Complexity metrics are derived from nonadditive entropy supported by generation of surrogate data, i.e. SDiff(qmax,) q(max) and q(zero). In order to access accuracy of proposed complexity metrics, receiver operating characteristic (ROC) curves were built and area under the curves was computed for three physiological situations. Heart rate variability (HRV) time series in normal sinus rhythm, atrial fibrillation, and congestive heart failure data set were analyzed. Results show that proposed metric for complexity is accurate and robust when compared to classic entropic irregularity metrics. Furthermore, SDiff(qmax) is the most accurate for lower scales, whereas q(max) and q(zero) are the most accurate when higher time scales are considered. Multiscale complexity analysis described here showed potential to assess complex physiological time series and deserves further investigation in wide context.(C) 2014 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 09/17723-0 - Análise do sinal de variabilidade da freqüência cardíaca através de estatística não-extensiva: taxa de q-entropia multiescala e q-análise espectral não-linear
Beneficiário:Luiz Eduardo Virgilio da Silva
Modalidade de apoio: Bolsas no Brasil - Doutorado