Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

ON REPRESENTATION OF THE REEB GRAPH AS A SUB-COMPLEX OF MANIFOLD

Autor(es):
Kaluba, Marek [1] ; Marzantowicz, Waclaw [1] ; Silva, Nelson [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan - Poland
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS; v. 45, n. 1, p. 287-307, MAR 2015.
Citações Web of Science: 3
Resumo

The Reeb graph R(f) is one of the fundamental invariants of a smooth function f: M -> R with isolated critical points. It is defined as the quotient space M/similar to of the closed manifold M by a relation that depends on f. Here we construct a 1-dimensional complex Gamma(f) embedded into M which is homotopy equivalent to R(f). As a consequence we show that for every function f on a manifold with finite fundamental group, the Reeb graph of f is a tree. If pi(1)(M) is an abelian group, or more general, a discrete amenable group, then R(f) contains at most one loop. Finally we prove that the number of loops in the Reeb graph of every function on a surface M-g is estimated from above by g, the genus of M-g. (AU)

Processo FAPESP: 12/15659-5 - Invariantes topológicos de problemas mini-max com simetria
Beneficiário:Nelson Antonio Silva
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado