Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Robust Joint Non-linear Mixed-Effects Models and Diagnostics for Censored HIV Viral Loads with CD4 Measurement Error

Texto completo
Autor(es):
Bandyopadhyay, Dipankar [1] ; Castro, Luis M. [2] ; Lachos, Victor H. [3] ; Pinheiro, Hildete P. [3]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Minnesota, Sch Publ Hlth, Biostat, Minneapolis, MN 55455 - USA
[2] Univ Concepcion, Dept Estadist, Concepcion - Chile
[3] Univ Estadual Campinas, Dept Estat, Campinas, SP - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS; v. 20, n. 1, p. 121-139, MAR 2015.
Citações Web of Science: 7
Resumo

Despite technological advances in efficiency enhancement of quantification assays, biomedical studies on HIV RNA collect viral load responses that are often subject to detection limits. Moreover, some related covariates such as CD4 cell count may be often measured with errors. Censored non-linear mixed-effects models are routinely used to analyze this type of data and are based on normality assumptions for the between-subject and within-subject random terms. However, derived inference may not be robust when the underlying normality assumptions are questionable, especially in presence of skewness and heavy tails. In this article, we address these issues simultaneously under a Bayesian paradigm through joint modeling of the response and covariate processes using an attractive class of skew-normal independent densities. The methodology is illustrated using a case study on longitudinal HIV viral loads. Diagnostics for outlier detection is immediate from the MCMC output. Both simulation and real data analysis reveal the advantage of the proposed models in providing robust inference under non-normality situations commonly encountered in HIV/AIDS or other clinical studies. Supplementary materials accompanying this paper appear on-line. (AU)

Processo FAPESP: 12/19445-0 - Modelagem flexível de modelos longitudinais complexos usando distribuições skew-elípticas
Beneficiário:Víctor Hugo Lachos Dávila
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Internacional
Processo FAPESP: 14/02938-9 - Estimação e diagnóstico em modelos de efeitos mistos para dados censurados usando misturas de escala skew-normal
Beneficiário:Víctor Hugo Lachos Dávila
Modalidade de apoio: Auxílio à Pesquisa - Regular