Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Transferring knowledge as heuristics in reinforcement learning: A case-based approach

Texto completo
Autor(es):
Bianchi, Reinaldo A. C. [1] ; Celiberto, Jr., Luiz A. [2] ; Santos, Paulo E. [1] ; Matsuura, Jackson P. [3] ; Lopez de Mantaras, Ramon [4]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Ctr Univ FEI, BR-09850901 Sao Paulo - Brazil
[2] Univ Fed ABC UFABC, Ctr Engn Modelagem & Ciencias Sociais Aplicadas C, BR-09210580 Sao Paulo - Brazil
[3] Technol Inst Aeronaut ITA, BR-12228900 Sao Paulo - Brazil
[4] CSIC, IIIA Artificial Intelligence Res Inst, Spanish Natl Res Council, Bellaterra 08193, Catalonia - Spain
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: ARTIFICIAL INTELLIGENCE; v. 226, p. 102-121, SEP 2015.
Citações Web of Science: 24
Resumo

The goal of this paper is to propose and analyse a transfer learning meta-algorithm that allows the implementation of distinct methods using heuristics to accelerate a Reinforcement Learning procedure in one domain (the target) that are obtained from another (simpler) domain (the source domain). This meta-algorithm works in three stages: first, it uses a Reinforcement Learning step to learn a task on the source domain, storing the knowledge thus obtained in a case base; second, it does an unsupervised mapping of the source-domain actions to the target-domain actions; and, third, the case base obtained in the first stage is used as heuristics to speed up the learning process in the target domain. A set of empirical evaluations were conducted in two target domains: the 3D mountain car (using a learned case base from a 2D simulation) and stability learning for a humanoid robot in the Robocup 3D Soccer Simulator (that uses knowledge learned from the Acrobot domain). The results attest that our transfer learning algorithm outperforms recent heuristically-accelerated reinforcement learning and transfer learning algorithms. (C) 2015 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 11/19280-8 - CogBot: integrando informação perceptual e conhecimento semântico na robótica cognitiva
Beneficiário:Anna Helena Reali Costa
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 12/04089-3 - Raciocínio espacial colaborativo para múltiplos robôs
Beneficiário:Paulo Eduardo Santos
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 12/14010-5 - Transferência de Aprendizado para Robôs Heterogêneos
Beneficiário:Luiz Antonio Celiberto Junior
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado