Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Gradient systems on coupled cell networks

Texto completo
Autor(es):
Manoel, Miriam [1] ; Roberts, Mark [2, 3]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, ICMC, Dept Math, BR-13560970 Sao Carlos, SP - Brazil
[2] Univ Surrey, Dept Math, Guildford GU2 7XH, Surrey - England
[3] African Inst Math Sci, Arusha - Tanzania
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: Nonlinearity; v. 28, n. 10, p. 3487-3509, OCT 2015.
Citações Web of Science: 2
Resumo

For networks of coupled dynamical systems we characterize admissible functions, that is, functions whose gradient is an admissible vector field. The schematic representation of a gradient network dynamical system is of an undirected cell graph, and we use tools from graph theory to deduce the general form of such functions, relating it to the topological structure of the graph defining the network. The coupling of pairs of dynamical systems cells is represented by edges of the graph, and from spectral graph theory we detect the existence and nature of equilibria of the gradient system from the critical points of the coupling function. In particular, we study fully synchronous and 2-state patterns of equilibria on regular graphs. These are two special types of equilibrium configurations for gradient networks. We also investigate equilibrium configurations of S-1-invariant admissible functions on a ring of cells. (AU)

Processo FAPESP: 13/11108-7 - Simetrias de funções em redes e de aplicações em espaços de Minkowski
Beneficiário:Míriam Garcia Manoel
Modalidade de apoio: Bolsas no Exterior - Pesquisa