Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Windowing improvements towards more comprehensible models

Texto completo
Autor(es):
Perez, Pedro Santoro [1] ; Nozawa, Sergio Ricardo [2] ; Macedo, Alessandra Alaniz [1] ; Baranauskas, Jose Augusto [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Dept Comp Sci & Math FFCLRP, BR-14040901 Ribeirao Preto, SP - Brazil
[2] Dow AgroSci Seeds Traits & Oils, BR-14020250 Ribeirao Preto, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: KNOWLEDGE-BASED SYSTEMS; v. 92, p. 9-22, JAN 15 2016.
Citações Web of Science: 2
Resumo

The induction of decision tree searches for relevant characteristics in the data which would allow it to precisely model a certain concept, but it also worries about the comprehensibility of the generated model, helping human specialists to discover new knowledge, something very important in the medical and biological areas. On the other hand, such inducers present some instability. The main problem handled here refers to the behavior of those inducers when it comes to high-dimensional data, more specifically to gene expression data: irrelevant attributes may harm the learning process and many models with similar performance may be generated. In order to treat those problems, we have explored and revised windowing: pruning of the trees generated during intermediary steps of the algorithm; the use of the estimated error instead of the training error; the use of the error weighted according to the size of the current window; and the use of the classification confidence as the window update criterion. The results show that the proposed algorithm outperform the classical one, especially considering measures of complexity and comprehensibility of the induced models. (C) 2015 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 09/04511-4 - Uma Abordagem para a Indução de Árvores de Decisão voltada para Dados de Expressão Gênica
Beneficiário:Pedro Santoro Perez
Modalidade de apoio: Bolsas no Brasil - Mestrado