Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Solvable, reductive and quasireductive supergroups

Texto completo
Autor(es):
Grishkov, A. N. [1] ; Zubkov, A. N. [2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Dept Matemat, Caixa Postal 66281, BR-05315970 Sao Paulo - Brazil
[2] Omsk State Polytech Univ, Mira 11, Omsk 644050 - Russia
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: Journal of Algebra; v. 452, p. 448-473, APR 15 2016.
Citações Web of Science: 4
Resumo

It is well known that if the ground field K has characteristic zero and G is a connected algebraic group, defined over K, then the Lie algebra Lie(G') of the commutant G' of G coincides with the commutant Lie(G)' of Lie(G). We show that this result is no longer true in the category of algebraic supergroups. We also construct a reductive supergroup H = X G, where X and G are connected, reduced and abelian supergroups, such that X-u not equal 1 and (H-ev)(u) is non-trivial connected (super)group. Quasi-reductive supergroups have been introduced in {[}10]. We prove that a supergroup H is quasi-reductive if and only if the largest even (super)subgroup of the solvable radical R(H) is a torus, (H) over tilde = H/R(H) contains a normal supersubgroup U, which is quasi-isomorphic to a direct product of normal supersubgroups U-i, and (H) over tilde /U is a triangulizable supergroup with odd unipotent radical. Moreover, for every i, Lie(U-i) = U-i circle times Sym(n(i)) are such that either n(i) = 0 and U-i is a classical simple Lie superalgebra, or n(i) = 1 and U-i is a simple Lie algebra. (C) 2015 Published by Elsevier Inc. (AU)

Processo FAPESP: 12/50027-0 - Alexandre Zubkov | Universidade Pedagógica de Omsk - Rússia
Beneficiário:Alexandre Grichkov
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Internacional