Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Automatic iterative segmentation of multiple sclerosis lesions using Student's t mixture models and probabilistic anatomical atlases in FLAIR images

Texto completo
Autor(es):
Freire, Paulo G. L. [1] ; Ferrari, Ricardo J. [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Fed Sao Carlos, Dept Comp, Rod Washington Luis, Km 235, BR-13565905 Sao Carlos, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: COMPUTERS IN BIOLOGY AND MEDICINE; v. 73, p. 10-23, JUN 1 2016.
Citações Web of Science: 4
Resumo

Multiple sclerosis (MS) is a demyelinating autoimmune disease that attacks the central nervous system (CNS) and affects more than 2 million people worldwide. The segmentation of MS lesions in magnetic resonance imaging (MRI) is a very important task to assess how a patient is responding to treatment and how the disease is progressing. Computational approaches have been proposed over the years to segment MS lesions and reduce the amount of time spent on manual delineation and inter- and intra-rater variability and bias. However, fully-automatic segmentation of MS lesions still remains an open problem. In this work, we propose an iterative approach using Student's t mixture models and probabilistic anatomical atlases to automatically segment MS lesions in Fluid Attenuated Inversion Recovery (FLAIR) images. Our technique resembles a refinement approach by iteratively segmenting brain tissues into smaller classes until MS lesions are grouped as the most hyperintense one. To validate our technique we used 21 clinical images from the 2015 Longitudinal Multiple Sclerosis Lesion Segmentation Challenge dataset. Evaluation using Dice Similarity Coefficient (DSC), True Positive Ratio (TPR), False Positive Ratio (FPR), Volume Difference (VD) and Pearson's r coefficient shows that our technique has a good spatial and volumetric agreement with raters' manual delineations. Also, a comparison between our proposal and the state-of-the-art shows that our technique is comparable and, in some cases, better than some approaches, thus being a viable alternative for automatic MS lesion segmentation in MRI. (C) 2016 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 14/00019-6 - Segmentação de placas de esclerose múltipla em imagens de ressonância magnética usando modelo de mistura de distribuições t-Student e detecção de outliers
Beneficiário:Paulo Guilherme de Lima Freire
Modalidade de apoio: Bolsas no Brasil - Mestrado
Processo FAPESP: 12/03100-3 - Pesquisa e desenvolvimento de técnicas automáticas para a detecção, segmentação e análise de placas de esclerose múltipla em imagens de ressonância magnética
Beneficiário:Ricardo José Ferrari
Modalidade de apoio: Auxílio à Pesquisa - Regular