Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A generalization of Noether's theorem for a non-material volume

Texto completo
Autor(es):
Casetta, Leonardo [1] ; Irschik, Hans [2] ; Pesce, Celso Pupo [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Escola Politecn, Dept Mech Engn, BR-05508 Sao Paulo - Brazil
[2] Johannes Kepler Univ Linz, Inst Tech Mech, A-4040 Linz - Austria
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK; v. 96, n. 6, p. 696-706, JUN 2016.
Citações Web of Science: 11
Resumo

Variable-mass conditions can occur in a variety of practical problems of engineering. Investigations on problems of this type have been figuring as a particular research field of mechanics and applied mathematics. The fundamental issue is that the basic equations of classical mechanics were originally formulated for the case of an invariant mass contained in a material volume. Therefore, appropriate formulations are required when dealing with variable-mass problems. The scope of the present article is devoted to arbitrarily moving control volumes formulated within the framework of Ritz's method, that is, to non-material volumes in the sense discussed by Irschik and Holl {[}10]. We aim at demonstrating a generalized version of Noether's theorem such that it can be grounded on the generalized Hamilton's principle for a non-material volume in the form derived by Casetta and Pesce {[}17]. This will consistently allow the consideration of conservation laws, written from a Noetherian approach, in this particular context of non-material volumes. To test the proposed formulation, the problem of a rotating drum uncoiling a strip will be addressed. (C) 2015 WILEY-VCH Verlag GmbH \& Co. KGaA, Weinheim (AU)

Processo FAPESP: 12/10848-4 - Estudos Avançados em mecânica de sistemas de massa variável
Beneficiário:Leonardo Casetta
Linha de fomento: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 13/02997-2 - Formalismo lagrangeano e Hamiltoniano para volumes não-materiais
Beneficiário:Leonardo Casetta
Linha de fomento: Bolsas no Exterior - Estágio de Pesquisa - Pós-Doutorado