Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Bayesian state-space approach to biomass dynamic models with skewed and heavy-tailed error distributions

Texto completo
Autor(es):
Montenegro, Carlos [1] ; Branco, Marcia [2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Inst Fomento Pesquero, Valparaiso - Chile
[2] Univ Sao Paulo, Inst Matemat & Estat, BR-05508 Sao Paulo - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: Fisheries Research; v. 181, p. 48-62, SEP 2016.
Citações Web of Science: 5
Resumo

We use the state-space approach to the logistic population growth model to update our knowledge of a population of marine shrimp off the Chilean coast. The unobserved state is the annual shrimp biomass, and the observation is the mean catch per unit effort. The observation equation is linear, and the state equation is nonlinear. The models include normal, student-t, skew-normal, and skew-t distributions for additive observation errors; and log-normal, log-t, log-skew-normal, and log-skew-t distributions for multiplicative observation errors. We use Bayesian approach to obtain inference, and the posterior distributions are approximated using Markov chain Monte Carlo methods. Deviance Information Criteria are lower in models considering log-skew-normal and log-skew-t observation errors. Furthermore, considering the posterior predictive distributions of the autocorrelations of the observation errors, these two models work best for the analyzed data set. (C) 2016 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 12/21788-2 - Modelos de regressão e aplicações
Beneficiário:Heleno Bolfarine
Modalidade de apoio: Auxílio à Pesquisa - Temático