| Texto completo | |
| Autor(es): |
Número total de Autores: 2
|
| Afiliação do(s) autor(es): | [1] Univ Sao Paulo, Dept Matemat, Caixa Postal 66281, BR-05315970 Sao Paulo, SP - Brazil
[2] CUNY Bronx Community Coll, Dept Math & Comp Sci, 2155 Univ Ave, Bronx, NY 10453 - USA
Número total de Afiliações: 2
|
| Tipo de documento: | Artigo Científico |
| Fonte: | Israel Journal of Mathematics; v. 212, n. 1, p. 473-506, MAY 2016. |
| Citações Web of Science: | 1 |
| Resumo | |
The algebra of quantum differential operators on graded algebras was introduced by V. Lunts and A. Rosenberg. D. Jordan, T. McCune and the second author have identified this algebra of quantum differential operators on the polynomial algebra with coefficients in an algebraically closed field of characteristic zero. It contains the first Weyl algebra and the quantum Weyl algebra as its subalgebras. In this paper we classify irreducible weight modules over the algebra of quantum differential operators on the polynomial algebra. Some classes of indecomposable modules are constructed in the case of positive characteristic and q root of unity. (AU) | |
| Processo FAPESP: | 10/50347-9 - Álgebras, representações e aplicações |
| Beneficiário: | Ivan Chestakov |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |
| Processo FAPESP: | 13/13970-8 - Álgebras de operadores diferenciais quânticos |
| Beneficiário: | Vyacheslav Futorny |
| Modalidade de apoio: | Auxílio à Pesquisa - Pesquisador Visitante - Internacional |