Busca avançada
Ano de início
Entree
Conteúdo relacionado
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

EVALUATION COMPLEXITY FOR NONLINEAR CONSTRAINED OPTIMIZATION USING UNSCALED KKT CONDITIONS AND HIGH-ORDER MODELS

Texto completo
Autor(es):
Birgin, E. G. ; Gardenghi, J. L. ; Martinez, J. M. ; Santos, S. A. ; Toint, Ph. L.
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: SIAM JOURNAL ON OPTIMIZATION; v. 26, n. 2, p. 951-967, 2016.
Citações Web of Science: 6
Resumo

The evaluation complexity of general nonlinear, possibly nonconvex, constrained optimization is analyzed. It is shown that, under suitable smoothness conditions, an epsilon-approximate first-order critical point of the problem can be computed in order O(epsilon(1-2(p+1)/p)) evaluations of the problem's functions and their first p derivatives. This is achieved by using a two-phase algorithm inspired by Cartis, Gould, and Toint {[}SIAM J. Optim., 21 (2011), pp. 1721-1739; SIAM J. Optim., 23 (2013), pp. 1553-1574]. It is also shown that strong guarantees (in terms of handling degeneracies) on the possible limit points of the sequence of iterates generated by this algorithm can be obtained at the cost of increased complexity. At variance with previous results, the epsilon-approximate first-order criticality is defined by satisfying a version of the KKT conditions with an accuracy that does not depend on the size of the Lagrange multipliers. (AU)

Processo FAPESP: 13/03447-6 - Estruturas combinatórias, otimização e algoritmos em Teoria da Computação
Beneficiário:Carlos Eduardo Ferreira
Linha de fomento: Auxílio à Pesquisa - Temático
Processo FAPESP: 10/10133-0 - Problemas de corte, empacotamento, dimensionamento de lotes e programação da produção, e suas integrações em contextos industriais e logísticos
Beneficiário:Reinaldo Morabito Neto
Linha de fomento: Auxílio à Pesquisa - Temático
Processo FAPESP: 13/05475-7 - Métodos computacionais de otimização
Beneficiário:Sandra Augusta Santos
Linha de fomento: Auxílio à Pesquisa - Temático
Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:José Alberto Cuminato
Linha de fomento: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 13/23494-9 - Minimização com restrições lineares de grande porte com convergência a pontos estacionários de segunda ordem
Beneficiário:John Lenon Cardoso Gardenghi
Linha de fomento: Bolsas no Brasil - Doutorado