Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Behavior Knowledge Space-Based Fusion for Copy-Move Forgery Detection

Texto completo
Autor(es):
Ferreira, Anselmo ; Felipussi, Siovani C. ; Alfaro, Carlos ; Fonseca, Pablo ; Vargas-Munoz, John E. ; dos Santos, Jefersson A. ; Rocha, Anderson
Número total de Autores: 7
Tipo de documento: Artigo Científico
Fonte: IEEE Transactions on Image Processing; v. 25, n. 10, p. 4729-4742, OCT 2016.
Citações Web of Science: 12
Resumo

The detection of copy-move image tampering is of paramount importance nowadays, mainly due to its potential use for misleading the opinion forming process of the general public. In this paper, we go beyond traditional forgery detectors and aim at combining different properties of copy-move detection approaches by modeling the problem on a multiscale behavior knowledge space, which encodes the output combinations of different techniques as a priori probabilities considering multiple scales of the training data. Afterward, the conditional probabilities missing entries are properly estimated through generative models applied on the existing training data. Finally, we propose different techniques that exploit the multi-directionality of the data to generate the final outcome detection map in a machine learning decision-making fashion. Experimental results on complex data sets, comparing the proposed techniques with a gamut of copy-move detection approaches and other fusion methodologies in the literature, show the effectiveness of the proposed method and its suitability for real-world applications. (AU)

Processo FAPESP: 15/19222-9 - DejaVu: análise forense de mídias sociais para interpretação de eventos criminais
Beneficiário:Anderson de Rezende Rocha
Modalidade de apoio: Bolsas no Exterior - Pesquisa