Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Fast electron transfer kinetics on novel interconnected nanospheres of graphene layers electrodes

Texto completo
Autor(es):
Peterlevitz, A. C. ; May, P. W. ; Harniman, R. L. ; Jones, J. A. ; Ceragioli, H. J. ; Zanin, H.
Número total de Autores: 6
Tipo de documento: Artigo Científico
Fonte: Thin Solid Films; v. 616, p. 698-702, OCT 1 2016.
Citações Web of Science: 5
Resumo

A novel thin solid film of interconnected carbon nanospheres (ICNS) has been developed and characterized as electrode. The thin film is composed of interconnected carbon nanospheres with average crystallite size of similar to 5 nm and laminar graphene layers separated by an interplanar spacing of similar to 0.32 nm. An electrode was prepared in a one-step process by depositing ICNS onto a niobium substrate by hot filament chemical vapour deposition. To prepare an electrode, solvent-refined oil without additives was annealed up to 530 degrees C under similar to 2700 Pa of a gas mixture containing ethanol, methanol, water, and boron trioxide. The resulting ICNS film was characterized by scanning and transmission electron microscopy, plus Raman, Fourier transform infrared and energy dispersive spectroscopies. The contact angle between deionized water and the ICNS surface was zero-the water droplet instantaneously spread over the sample surface indicating a hydrophilic surface. The film behaviour as an electrochemical electrode was studied by cyclic voltammetry and electrochemical impedance spectroscopy. ICNS layers exhibited a large potential window, low uncompensated resistance, as well as low charge-transfer impedance in the presence of ferrocene-methanol or ferrocyanide as redox probes. These useful properties make ICNS electrodes very promising for future applications in electrocatalysis and (bio)sensors. (C) 2016 Published by Elsevier B.V. (AU)

Processo FAPESP: 14/02163-7 - Desenvolvimento de dispositivos supercapacitores a partir de grafenos, nanotubos de carbono e diamantes
Beneficiário:Hudson Giovani Zanin
Linha de fomento: Auxílio à Pesquisa - Apoio a Jovens Pesquisadores