Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Fast electron transfer kinetics on novel interconnected nanospheres of graphene layers electrodes

Full text
Author(s):
Peterlevitz, A. C. ; May, P. W. ; Harniman, R. L. ; Jones, J. A. ; Ceragioli, H. J. ; Zanin, H.
Total Authors: 6
Document type: Journal article
Source: Thin Solid Films; v. 616, p. 698-702, OCT 1 2016.
Web of Science Citations: 5
Abstract

A novel thin solid film of interconnected carbon nanospheres (ICNS) has been developed and characterized as electrode. The thin film is composed of interconnected carbon nanospheres with average crystallite size of similar to 5 nm and laminar graphene layers separated by an interplanar spacing of similar to 0.32 nm. An electrode was prepared in a one-step process by depositing ICNS onto a niobium substrate by hot filament chemical vapour deposition. To prepare an electrode, solvent-refined oil without additives was annealed up to 530 degrees C under similar to 2700 Pa of a gas mixture containing ethanol, methanol, water, and boron trioxide. The resulting ICNS film was characterized by scanning and transmission electron microscopy, plus Raman, Fourier transform infrared and energy dispersive spectroscopies. The contact angle between deionized water and the ICNS surface was zero-the water droplet instantaneously spread over the sample surface indicating a hydrophilic surface. The film behaviour as an electrochemical electrode was studied by cyclic voltammetry and electrochemical impedance spectroscopy. ICNS layers exhibited a large potential window, low uncompensated resistance, as well as low charge-transfer impedance in the presence of ferrocene-methanol or ferrocyanide as redox probes. These useful properties make ICNS electrodes very promising for future applications in electrocatalysis and (bio)sensors. (C) 2016 Published by Elsevier B.V. (AU)

FAPESP's process: 14/02163-7 - Development of supercapacitors devices from graphene, carbon nanotubes and diamonds
Grantee:Hudson Giovani Zanin
Support type: Research Grants - Young Investigators Grants