Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Measuring plasma levels of three microRNAs can improve the accuracy for identification of malignant breast lesions in women with BI-RADS 4 mammography

Texto completo
Autor(es):
Mostrar menos -
Pezuk, Julia Alejandra [1] ; Araujo Miller, Thiago Luiz [2, 1] ; Barbosa Bevilacqua, Jose Luiz [1] ; Simoes Dornellas de Barros, Alfredo Carlos [1] ; Martins de Andrade, Felipe Eduardo [1] ; de Andrade e Macedo, Luiza Freire [1] ; Aguilar, Vera [1] ; Menardo Claro, Amanda Natasha [1, 3] ; Camargo, Anamaria Aranha [1] ; Favoretto Galante, Pedro Alexandre [1] ; Reis, Luiz F. L. [1]
Número total de Autores: 11
Afiliação do(s) autor(es):
[1] Hosp Sirio Libanes, Sao Paulo - Brazil
[2] Univ Sao Paulo, Inst Quim, Dept Bioquim, Sao Paulo - Brazil
[3] SulAmerica, Sao Paulo - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: ONCOTARGET; v. 8, n. 48, p. 83940-83948, OCT 13 2017.
Citações Web of Science: 5
Resumo

A BI-RADS category of 4 from a mammogram indicates suspicious breast lesions, which require core biopsies for diagnosis and have an approximately one third chance of being malignant. Human plasma contains many circulating microRNAs, and variations in their circulating levels have been associated with pathologies, including cancer. Here, we present a novel methodology to identify malignant breast lesions in women with BI-RADS 4 mammography. First, we used the miRNome array and qRT-PCR to define circulating microRNAs that were differentially represented in blood samples from women with breast tumor (BI-RADS 5 or 6) in comparison to controls (BI-RADS 1 or 2). Next, we used qRT-PCR to quantify the level of this circulating microRNAs in patients with mammograms presenting with BI-RADS category 4. Finally, we developed a machine learning method (Artificial Neural Network-ANN) that receives circulating microRNA levels and automatically classifies BI-RADS 4 breast lesions as malignant or benign. We identified a minimum set of three circulating miRNAs (miR-15a, miR-101 and miR-144) with altered levels in patients with breast cancer. These three miRNAs were quantified in plasma from 60 patients presenting biopsy-proven BI-RADS 4 lesions. Finally, we constructed a very efficient ANN that could correctly classify BI-RADS 4 lesions as malignant or benign with approximately 92.5% accuracy, 95% specificity and 88% sensibility. We believe that our strategy of using circulating microRNA and a machine learning method to classify BI-RADS 4 breast lesions is a non-invasive, non-stressful and valuable complementary approach to core biopsy in women with BI-RADS 4 lesions. (AU)

Processo FAPESP: 13/03107-0 - Correlação entre o perfil de expressão de microRNAs encontrado no plasma e a presença ou não de lesão maligna na mama em pacientes com classificação BI-RADS 4 nos relatos radiológicos de mamografia
Beneficiário:Luiz Fernando Lima Reis
Linha de fomento: Auxílio à Pesquisa - Regular
Processo FAPESP: 14/14025-8 - Identificação de um perfil de expressão de microRNAs no plasma de pacientes com imagens radiológicas de mamografia BI-RADS 4 capaz de diferenciar entre presença ou ausência de lesão maligna na mama
Beneficiário:Julia Alejandra Pezuk
Linha de fomento: Bolsas no Brasil - Pós-Doutorado