Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Transient computations using the natural stress formulation for solving sharp corner flows

Texto completo
Autor(es):
Evans, J. D. [1] ; Oishi, C. M. [2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon - England
[2] Univ Estadual Paulista, Dept Matemat & Computacao, Fac Ciencias & Tecnol, BR-19060900 Presidente Prudente, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: Journal of Non-Newtonian Fluid Mechanics; v. 249, p. 48-52, NOV 2017.
Citações Web of Science: 2
Resumo

In this short communication, we analyse the potential of the natural stress formulation (NSF) (i.e. aligning the stress basis along streamlines) for computing planar flows of an Oldroyd-B fluid around sharp corners. This is the first attempt to combine the NSF into a numerical strategy for solving a transient fluid flow problem considering the momentum equation in Navier-Stokes form (the elastic stress entering as a source term) and using the constitutive equations for natural stress variables. Preliminary results of the NSF are motivating in the sense that accuracy of the numerical solution for the extra stress tensor is improved near to the sharp corner. Comparison studies among the NSF and the Cartesian stress formulation (CSF) (i.e. using a fixed Cartesian stress basis) are conducted in a typical benchmark viscoelastic fluid flow involving a sharp corner: the 4 : 1 contraction. The CSF needs a mesh approximately 10 times smaller to capture similar near singularity results to the NSF. (C) 2017 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 15/50094-7 - Asymptotics and simulation of complex fluids
Beneficiário:José Alberto Cuminato
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs