Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Mapping skips in sugarcane fields using object-based analysis of unmanned aerial vehicle (UAV) images

Texto completo
Autor(es):
Wachholz de Souza, Carlos Henrique [1] ; Camargo Lamparelli, Rubens Augusto [2] ; Rocha, Jansle Vieira [1] ; Graziano Magalhaes, Paulo Sergio [1, 2]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Sch Agr Engn, BR-13083875 Campinas, SP - Brazil
[2] Univ Estadual Campinas, Interdisciplinary Ctr Energy Planning, BR-13083896 Campinas, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: COMPUTERS AND ELECTRONICS IN AGRICULTURE; v. 143, p. 49-56, DEC 2017.
Citações Web of Science: 13
Resumo

The use of unmanned aerial vehicles (UAVs) as remote sensing platforms has tremendous potential for describing detailed site-specific features of crops, especially in early post-emergence, which was not possible previously with satellite images. This article describes an object-based image analysis (OBIA) procedure for UAV images, designed to map and extract information about skips in sugarcane planting rows. The procedure consists of three consecutive phases: (1) identification of sugarcane planting rows, (2) identification of the existent sugarcane within the crop rows, and (3) skip extraction and creation of field-extent crop maps. Results based on experimental fields achieved skip rates of between 2.29% and 10.66%, indicating a planting operation with excellent and good quality, respectively. The relationship of estimated versus observed skip length had a coefficient of determination of 0.97, which was confirmed by the value of the enhanced Wilmott concordance coefficient of 0.92, indicating good agreement. The OBIA procedure allowed a high level of automation and adaptability, and it provided useful information for decision making, agricultural monitoring, and the reduction of operational costs. (AU)

Processo FAPESP: 12/50048-7 - Metodologia para utilização de VANT no monitoramento de cana-de-açúcar para fins de agricultura de precisão
Beneficiário:Jansle Vieira Rocha
Modalidade de apoio: Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE