Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Genomic prediction applied to high-biomass sorghum for bioenergy production

Texto completo
Autor(es):
de Oliveira, Amanda Avelar [1] ; Pastina, Maria Marta [2] ; de Souza, Vander Filipe [2] ; da Costa Parrella, Rafael Augusto [2] ; Noda, Roberto Willians [2] ; Ferreira Simeone, Maria Lucia [2] ; Schaffert, Robert Eugene [2] ; de Magalhes, Jurandir Vieira [2] ; Borges Damasceno, Cynthia Maria [2] ; Alves Margarido, Gabriel Rodrigues [1]
Número total de Autores: 10
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Dept Genet, Luiz de Queiroz Coll Agr, BR-13418900 Piracicaba, SP - Brazil
[2] Embrapa Maize & Sorghum, BR-35701970 Sete Lagoas, MG - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: MOLECULAR BREEDING; v. 38, n. 4 APR 2018.
Citações Web of Science: 5
Resumo

The increasing cost of energy and finite oil and gas reserves have created a need to develop alternative fuels from renewable sources. Due to its abiotic stress tolerance and annual cultivation, high-biomass sorghum (Sorghum bicolor L. Moench) shows potential as a bioenergy crop. Genomic selection is a useful tool for accelerating genetic gains and could restructure plant breeding programs by enabling early selection and reducing breeding cycle duration. This work aimed at predicting breeding values via genomic selection models for 200 sorghum genotypes comprising landrace accessions and breeding lines from biomass and saccharine groups. These genotypes were divided into two sub-panels, according to breeding purpose. We evaluated the following phenotypic biomass traits: days to flowering, plant height, fresh and dry matter yield, and fiber, cellulose, hemicellulose, and lignin proportions. Genotyping by sequencing yielded more than 258,000 single-nucleotide polymorphism markers, which revealed population structure between subpanels. We then fitted and compared genomic selection models BayesA, BayesB, BayesC pi, BayesLasso, Bayes Ridge Regression and random regression best linear unbiased predictor. The resulting predictive abilities varied little between the different models, but substantially between traits. Different scenarios of prediction showed the potential of using genomic selection results between sub-panels and years, although the genotype by environment interaction negatively affected accuracies. Functional enrichment analyses performed with the marker-predicted effects suggested several interesting associations, with potential for revealing biological processes relevant to the studied quantitative traits. This work shows that genomic selection can be successfully applied in biomass sorghum breeding programs. (AU)

Processo FAPESP: 13/25132-7 - Métodos de seleção genômica aplicados a sorgo biomassa para produção de etanol de segunda geração
Beneficiário:Amanda Avelar de Oliveira
Linha de fomento: Bolsas no Brasil - Mestrado
Processo FAPESP: 15/22993-7 - Transcriptômica para identificação de genes de interesse comercial em cana-de-açúcar
Beneficiário:Gabriel Rodrigues Alves Margarido
Linha de fomento: Auxílio à Pesquisa - Programa BIOEN - Apoio a Jovens Pesquisadores