Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Linear response theory for a pseudo-Hermitian system-reservoir interaction

Texto completo
Autor(es):
Duarte, O. S. [1] ; Luiz, F. S. [1] ; Moussa, M. H. Y. [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Sao Carlos Inst Phys, POB 369, BR-13560970 Sao Carlos, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: EPL; v. 121, n. 5 MAR 2018.
Citações Web of Science: 0
Resumo

We present here an extension of the Caldeira-Leggett linear response model considering a pseudo-Hermitian PT-symmetric system-reservoir interaction. Our generalized Feynman-Vernon functional, derived from the PT-symmetric coupling, accounts for two influence channels: a velocity-dependent one, which can act in reverse, providing energy to the system instead of draining it as usual, and an acceleration-dependent drain, analogue to the radiation-emission process. Therefore, an adequate choice of the Hamiltonian's parameters may allow the system to extract energy from the reservoir even at absolute zero for a period that may be much longer than the characteristic relaxation time. After this energy supply, the system is driven to a steady state whose energy is necessarily higher than the thermodynamic equilibrium energy due to the velocity-dependent pump. This heating mechanism of the system is more pronounced the more distant from the hermiticity is its coupling with the reservoir. An analytical derivation of the high-temperature master equation is provided helping us to better understand the whole scenario and to compute the associated relaxation and decoherence rates. Copyright (C) EPLA, 2018 (AU)

Processo FAPESP: 14/00485-7 - Dinâmica do emaranhamento na presença de ambientes dissipativos para estados não gaussianos e no problema de Fermi-Pasta-Ulam
Beneficiário:Oscar Salomón Duarte Muñoz
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado