Sobre fluxos de Reeb tri-dimensionais: existência implicada de órbitas periódicas ...
Sistemas de seções transversais para fluxos de Reeb em dimensão 3
Texto completo | |
Autor(es): |
Abbondandolo, Alberto
[1]
;
Bramham, Barney
[1]
;
Hryniewicz, Umberto L.
[2]
;
Salomao, Pedro A. S.
[3]
Número total de Autores: 4
|
Afiliação do(s) autor(es): | [1] Ruhr Univ Bochum, Fak Math, Univ Str 150, D-44801 Bochum - Germany
[2] Univ Fed Rio de Janeiro, Inst Matemat, Dept Matemat Aplicada, Ctr Tecnol, Ilha Fundao, Ave Athos da Silveira Ramos 149, Bloco C, BR-21941909 Rio De Janeiro - Brazil
[3] Univ Sao Paulo, Inst Matemat & Estat, Dept Matemat, Rua Matao 1010, Cidade Univ, BR-05508090 Sao Paulo - Brazil
Número total de Afiliações: 3
|
Tipo de documento: | Artigo Científico |
Fonte: | INVENTIONES MATHEMATICAE; v. 211, n. 2, p. 687-778, FEB 2018. |
Citações Web of Science: | 3 |
Resumo | |
The systolic ratio of a contact form on the three-sphere is the quantity rho(sys)(alpha) = T-min(alpha)(2)/vol(S-3, alpha boolean AND d alpha), where is the minimal period of closed Reeb orbits on . A Zoll contact form is a contact form such that all the orbits of the corresponding Reeb flow are closed and have the same period. Our first main result is that in a neighbourhood of the space of Zoll contact forms on , with equality holding precisely at Zoll contact forms. This implies a particular case of a conjecture of Viterbo, a local middle-dimensional non-squeezing theorem, and a sharp systolic inequality for Finsler metrics on the two-sphere which are close to Zoll ones. Our second main result is that is unbounded from above on the space of tight contact forms on . (AU) | |
Processo FAPESP: | 11/16265-8 - Dinâmica em baixas dimensões |
Beneficiário: | Edson Vargas |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |