Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Broken Rotor Bars Detection in Induction Motors Running at Very Low Slip Using a Hall Effect Sensor

Texto completo
Autor(es):
Dias, Cleber Gustavo [1] ; Pereira, Fabio Henrique [1, 2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Nove de Julho Univ, Informat & Knowledge Management Grad Program, BR-01504000 Sao Paulo - Brazil
[2] Nove de Julho Univ, Ind Engn Post Graduat Program, BR-01504000 Sao Paulo - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: IEEE SENSORS JOURNAL; v. 18, n. 11, p. 4602-4613, JUN 1 2018.
Citações Web of Science: 6
Resumo

This paper proposes the use of a Hall effect sensor installed between two stator slots of a squirrel cage induction motor, spectral analysis of the air gap disturbances and machine learning approaches for diagnosing fully broken rotor bars in motors running at very low slip. This paper overcomes a typical drawback of broken bars diagnosis by using the traditional analysis of the motor current signature, usually when machines operate under low or no-load conditions. A fast Fourier transform has been performed in Hall sensor data to identify some harmonic features, and also, some statistical data have been extracted to get time-domain properties. These values were used as inputs for a multilayer perceptron (MLP) neural network classifier, a k-nearest neighbor classifier, and a support vector machine classification technique. In addition, principal component analysis has been applied to reduce data dimension among some original values, i.e., for both time and frequency features, and contribute to rotor failure detection. A cross-validation method has been used for classifier performance evaluation on each case. The efficiency of this approach was evaluated from a 7.5-kW squirrel cage induction machine running at very low slip conditions, and MLP classifier has achieved better results than the other intelligent methods. (AU)

Processo FAPESP: 16/02525-1 - Diagnóstico de barras rompidas em motores de indução com rotor gaiola de esquilo usando técnicas inteligentes
Beneficiário:Cleber Gustavo Dias
Modalidade de apoio: Auxílio à Pesquisa - Regular