Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A simple centrality index for scientific social recognition

Texto completo
Autor(es):
Kinouchi, Osame [1] ; Soares, Leonardo D. H. [1] ; Cardoso, George C. [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Dept Fis, FFCLRP, BR-14040901 Ribeirao Preto - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS; v. 491, p. 632-640, FEB 1 2018.
Citações Web of Science: 0
Resumo

We introduce a new centrality index for bipartite networks of papers and authors that we call K-index. The K-index grows with the citation performance of the papers that cite a given researcher and can be seen as a measure of scientific social recognition. Indeed, the K-index measures the number of hubs, defined in a self-consistent way in the bipartite network, that cites a given author. We show that the K-index can be computed by simple inspection of the Web of Science platform and presents several advantages over other centrality indexes, in particular Hirsch h-index. The K-index is robust to self-citations, is not limited by the total number of papers published by a researcher as occurs for the h-index and can distinguish in a consistent way researchers that have the same h-index but very different scientific social recognition. The K-index easily detects a known case of a researcher with inflated number of papers, citations and h-index due to scientific misconduct. Finally, we show that, in a sample of twenty-eight physics Nobel laureates and twenty-eight highly cited non-Nobel-laureate physicists, the K-index correlates better to the achievement of the prize than the number of papers, citations, citations per paper, citing articles or the h-index. Clustering researchers in a K versus h plot reveals interesting outliers that suggest that these two indexes can present complementary independent information. (C) 2017 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 13/07699-0 - Centro de Pesquisa, Inovação e Difusão em Neuromatemática - NeuroMat
Beneficiário:Jefferson Antonio Galves
Linha de fomento: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs