Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Extending multivariate-t linear mixed models for multiple longitudinal data with censored responses and heavy tails

Texto completo
Autor(es):
Wang, Wan-Lun [1] ; Lin, Tsung-I [2, 3] ; Lachos, Victor H. [4]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Feng Chia Univ, Dept Stat, Grad Inst Stat & Actuarial Sci, Taichung - Taiwan
[2] Natl Chung Hsing Univ, Inst Stat, Taichung - Taiwan
[3] China Med Univ, Dept Publ Hlth, Taichung - Taiwan
[4] Univ Estadual Campinas, Dept Estat, Campinas, SP - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: STATISTICAL METHODS IN MEDICAL RESEARCH; v. 27, n. 1, p. 48-64, JAN 2018.
Citações Web of Science: 11
Resumo

The analysis of complex longitudinal data is challenging due to several inherent features: (i) more than one series of responses are repeatedly collected on each subject at irregularly occasions over a period of time; (ii) censorship due to limits of quantification of responses arises left- and/or right- censoring effects; (iii) outliers or heavy-tailed noises are possibly embodied within multiple response variables. This article formulates the multivariate-t linear mixed model with censored responses (MtLMMC), which allows the analysts to model such data in the presence of the above described features simultaneously. An efficient expectation conditional maximization either (ECME) algorithm is developed to carry out maximum likelihood estimation of model parameters. The implementation of the E-step relies on the mean and covariance matrix of truncated multivariate-t distributions. To enhance the computational efficiency, two auxiliary permutation matrices are incorporated into the procedure to determine the observed and censored parts of each subject. The proposed methodology is demonstrated via a simulation study and a real application on HIV/AIDS data. (AU)

Processo FAPESP: 14/02938-9 - Estimação e diagnóstico em modelos de efeitos mistos para dados censurados usando misturas de escala skew-normal
Beneficiário:Víctor Hugo Lachos Dávila
Modalidade de apoio: Auxílio à Pesquisa - Regular