Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Automatic Temporal Segmentation of Vessels of the Brain Using 4D ASL MRA Images

Texto completo
Autor(es):
Phellan, Renzo [1, 2] ; Lindner, Thomas [3] ; Helle, Michael [4] ; Falcao, Alexandre X. [5] ; Forkert, Nils Daniel [1, 2]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Univ Calgary, Dept Radiol, Calgary, AB T2N 1N4 - Canada
[2] Univ Calgary, Hotchkiss Brains Inst, Calgary, AB T2N 1N4 - Canada
[3] Univ Med Ctr Schleswig Holstein, Clin Radiol & Neuroradiol, Kiel - Germany
[4] Philips Technol GmbH, Innovat Technol, Aachen - Germany
[5] Univ Estadual Campinas, Inst Comp, Lab Image Data Sci, Campinas, SP - Brazil
Número total de Afiliações: 5
Tipo de documento: Artigo Científico
Fonte: IEEE Transactions on Biomedical Engineering; v. 65, n. 7, p. 1486-1494, JUL 2018.
Citações Web of Science: 1
Resumo

Objective: Automatic vessel segmentation can be used to process the considerable amount of data generated by four-dimensional arterial spin labeling magnetic resonance angiography (4D ASL MRA) images. Previous segmentation approaches for dynamic series of images propose either reducing the series to a temporal average (tAIP) or maximum intensity projection (tMIP) prior to vessel segmentation, or a separate segmentation of each image. This paper introduces a method that combines both approaches to overcome the specific drawbacks of each technique. Methods: Vessels in the tAIP are enhanced by using the ranking orientation responses of path operators and multiscale vesselness enhancement filters. Then, tAIP segmentation is performed using a seed-based algorithm. In parallel, this algorithm is also used to segment each frame of the series and identify small vessels, which might have been lost in the tAIP segmentation. The results of each individual time frame segmentation are fused using an or boolean operation. Finally, small vessels found only in the fused segmentation are added to the tAIP segmentation. Results: In a quantitative analysis using ten 4D ASL MRA image series from healthy volunteers, the proposed combined approach reached an average Dice coefficient of 0.931, being more accurate than the corresponding tMIP, tAIP, and single time frame segmentation methods with statistical significance. Conclusion: The novel combined vessel segmentation strategy can be used to obtain improved vessel segmentation results from 4D ASL MRA and other dynamic series of images. Significance: Improved vessel segmentation of 4D ASL MRA allows a fast and accurate assessment of cerebrovascular structures. (AU)

Processo FAPESP: 14/12236-1 - AnImaLS: Anotação de Imagem em Larga Escala: o que máquinas e especialistas podem aprender interagindo?
Beneficiário:Alexandre Xavier Falcão
Modalidade de apoio: Auxílio à Pesquisa - Temático