Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Finite-size correction scheme for supercell calculations in Dirac-point two-dimensional materials

Texto completo
Autor(es):
Rocha, C. G. [1, 2, 3] ; Rocha, A. R. [4, 5] ; Venezuela, P. [6] ; Garcia, J. H. [7, 8] ; Ferreira, M. S. [1, 2, 3]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Trinity Coll Dublin, Sch Phys, Dublin 2 - Ireland
[2] Trinity Coll Dublin, CRANN, Dublin 2 - Ireland
[3] Trinity Coll Dublin, Adv Mat & Bioengn Res Ctr AMBER, Dublin 2 - Ireland
[4] MIT, Dept Chem Engn, Cambridge, MA 02139 - USA
[5] Univ Estadual Paulista, UNESP, Inst Fis Teor, Sao Paulo - Brazil
[6] Univ Fed Fluminense, Inst Fis, Niteroi, RJ - Brazil
[7] Catalan Inst Nanosci & Nanotechnol ICN2, Barcelona - Spain
[8] Barcelona Inst Sci & Technol, CSIC, Campus UAB, Barcelona 08193 - Spain
Número total de Afiliações: 8
Tipo de documento: Artigo Científico
Fonte: SCIENTIFIC REPORTS; v. 8, JUN 19 2018.
Citações Web of Science: 0
Resumo

Modern electronic structure calculations are predominantly implemented within the super cell representation in which unit cells are periodically arranged in space. Even in the case of non-crystalline materials, defect-embedded unit cells are commonly used to describe doped structures. However, this type of computation becomes prohibitively demanding when convergence rates are sufficiently slow and may require calculations with very large unit cells. Here we show that a hitherto unexplored feature displayed by several 2D materials may be used to achieve convergence in formation-and adsorption-energy calculations with relatively small unit-cell sizes. The generality of our method is illustrated with Density Functional Theory calculations for different 2D hosts doped with different impurities, all of which providing accuracy levels that would otherwise require enormously large unit cells. This approach provides an efficient route to calculating the physical properties of 2D systems in general but is particularly suitable for Dirac-point materials doped with impurities that break their sublattice symmetry. (AU)

Processo FAPESP: 16/01343-7 - ICTP Instituto Sul-Americano para Física Fundamental: um centro regional para física teórica
Beneficiário:Nathan Jacob Berkovits
Linha de fomento: Auxílio à Pesquisa - Temático
Processo FAPESP: 15/26862-4 - Simulando transporte eletrônico usando métodos QM/MM e Monte Carlo adaptativo: aplicações a chips de DNA
Beneficiário:Alexandre Reily Rocha
Linha de fomento: Bolsas no Exterior - Pesquisa