Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Crime prediction through urban metrics and statistical learning

Texto completo
Autor(es):
Alves, Luiz G. A. [1] ; Ribeiro, V, Haroldo ; Rodrigues, Francisco A. [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Math & Comp Sci, Sao Carlos, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS; v. 505, p. 435-443, SEP 1 2018.
Citações Web of Science: 6
Resumo

Understanding the causes of crime is a longstanding issue in researcher's agenda. While it is a hard task to extract causality from data, several linear models have been proposed to predict crime through the existing correlations between crime and urban metrics. However, because of non-Gaussian distributions and multicollinearity in urban indicators, it is common to find controversial conclusions about the influence of some urban indicators on crime. Machine learning ensemble-based algorithms can handle well such problems. Here, we use a random forest regressor to predict crime and quantify the influence of urban indicators on homicides. Our approach can have up to 97% of accuracy on crime prediction, and the importance of urban indicators is ranked and clustered in groups of equal influence, which are robust under slightly changes in the data sample analyzed. Our results determine the rank of importance of urban indicators to predict crime, unveiling that unemployment and illiteracy are the most important variables for describing homicides in Brazilian cities. We further believe that our approach helps in producing more robust conclusions regarding the effects of urban indicators on crime, having potential applications for guiding public policies for crime control. (C) 2018 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 16/16987-7 - Uma abordagem de sistemas complexos para desenvolvimento e planejamento urbano
Beneficiário:Luiz Gustavo de Andrade Alves
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 16/25682-5 - Propagação de informação em redes complexas
Beneficiário:Francisco Aparecido Rodrigues
Modalidade de apoio: Auxílio à Pesquisa - Regular