Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Uniaxial-deformation behavior of ice I-h as described by the TIP4P/Ice and mW water models

Texto completo
Autor(es):
Santos-Florez, Pedro Antonio [1] ; Ruestes, Carlos J. [2, 3] ; de Koning, Maurice [1, 4]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, UNICAMP, Inst Fis Gleb Wataghin, BR-13083859 Campinas, SP - Brazil
[2] Univ Nacl Cuyo, CONICET, Mendoza - Argentina
[3] Univ Nacl Cuyo, Fac Ciencias Exactas & Nat, Mendoza - Argentina
[4] Univ Estadual Campinas, UNICAMP, Ctr Computat Engn & Sci, BR-13083861 Campinas, SP - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: Journal of Chemical Physics; v. 149, n. 16 OCT 28 2018.
Citações Web of Science: 1
Resumo

Using molecular dynamics simulations, we assess the uniaxial deformation response of ice I-h as described by two popular water models, namely, the all-atom TIP4P/Ice potential and the coarse-grained mW model. In particular, we investigate the response to both tensile and compressive uniaxial deformations along the {[}0001] and {[}0 (1) over bar 10] crystallographic directions for a series of different temperatures. We classify the respective failure mechanisms and assess their sensitivity to strain rate and cell size. While the TIP4P/Ice model fails by either brittle cleavage under tension at low temperatures or large-scale amorphization/melting, the mW potential behaves in a much more ductile manner, displaying numerous cases in which stress relief involves the nucleation and subsequent activity of lattice dislocations. Indeed, the fact that mW behaves in such a malleable manner even at strain rates that are substantially higher than those applied in typical experiments indicates that the mW description of ice I-h is excessively ductile. One possible contribution to this enhanced malleability is the absence of explicit protons in the mW model, disregarding the fundamental asymmetry of the hydrogen bond that plays an important role in the nucleation and motion of lattice dislocations in ice I-h. Published by AIP Publishing. (AU)

Processo FAPESP: 16/23891-6 - Modelagem computacional da matéria condensada
Beneficiário:Alex Antonelli
Linha de fomento: Auxílio à Pesquisa - Temático
Processo FAPESP: 13/08293-7 - CECC - Centro de Engenharia e Ciências Computacionais
Beneficiário:Munir Salomao Skaf
Linha de fomento: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs