Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Classification of Chicken Parts Using a Portable Near-Infrared (NIR) Spectrophotometer and Machine Learning

Texto completo
Autor(es):
Nolasco Perez, Irene Marivel [1] ; Badaro, Amanda Teixeira [1] ; Barbon, Jr., Sylvio [2] ; Barbon, Ana Paula A. C. [3] ; Rodrigues Pollonio, Marise Aparecida [4] ; Barbin, Douglas Fernandes [1]
Número total de Autores: 6
Afiliação do(s) autor(es):
[1] Univ Campinas Unicamp, Dept Food Engn, Campinas, SP - Brazil
[2] Londrina State Univ UEL, Dept Comp Sci, Londrina - Brazil
[3] Londrina State Univ UEL, Dept Zootechnol, Londrina - Brazil
[4] Univ Campinas UNICAMP, Dept Food Technol, Campinas, SP - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: Applied Spectroscopy; v. 72, n. 12, p. 1774-1780, DEC 2018.
Citações Web of Science: 1
Resumo

Identification of different chicken parts using portable equipment could provide useful information for the processing industry and also for authentication purposes. Traditionally, physical-chemical analysis could deal with this task, but some disadvantages arise such as time constraints and requirements of chemicals. Recently, near-infrared (NIR) spectroscopy and machine learning (ML) techniques have been widely used to obtain a rapid, noninvasive, and precise characterization of biological samples. This study aims at classifying chicken parts (breasts, thighs, and drumstick) using portable NIR equipment combined with ML algorithms. Physical and chemical attributes (pH and L{*}a{*}b{*} color features) and chemical composition (protein, fat, moisture, and ash) were determined for each sample. Spectral information was acquired using a portable NIR spectrophotometer within the range 900-1700 nm and principal component analysis was used as screening approach. Support vector machine and random forest algorithms were compared for chicken meat classification. Results confirmed the possibility of differentiating breast samples from thighs and drumstick with 98.8% accuracy. The results showed the potential of using a NIR portable spectrophotometer combined with a ML approach for differentiation of chicken parts in the processing industry. (AU)

Processo FAPESP: 06/03263-9 - Processo, embalagem, aplicação de coberturas comestíveis e avaliação da qualidade de algumas frutas tropicais a alta umidade
Beneficiário:Miriam Dupas Hubinger
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 15/24351-2 - Análise de imagens e espectroscopia de infravermelho próximo (NIR) na avaliação de qualidade e autenticação de alimentos
Beneficiário:Douglas Fernandes Barbin
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores