Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Parsimonious Short-Term Load Forecasting for Optimal Operation Planning of Electrical Distribution Systems

Texto completo
Autor(es):
Lopez, Juan Camilo [1] ; Rider, Marcos J. [1] ; Wu, Qiuwei [2, 3]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Dept Energy & Syst, BR-13083852 Campinas, SP - Brazil
[2] Tech Univ Denmark, Ctr Elect & Energy, Dept Elect Engn, DK-2800 Lyngby - Denmark
[3] Harvard Univ, Sch Engn & Appl Sci, Harvard China Project, Cambridge, MA 02138 - USA
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: IEEE Transactions on Power Systems; v. 34, n. 2, p. 1427-1437, MAR 2019.
Citações Web of Science: 2
Resumo

The optimal operation planning (OOP) of electrical distribution systems (EDS) is very sensible to the quality of the short-term load forecasts. Assuming aggregated demands in EDS as univariate non-stationary seasonal time series, and based on historical measurements gathered by smart meters, this paper presents a parsimonious short-term load forecasting method to estimate the expected outcomes of future demands, and the standard deviations of forecast errors. The chosen short-term load forecasting method is an adaptation of the multiplicative autoregressive integrated moving average (ARIMA) models. Seasonal ARIMA models are parsimonious forecasting techniques because they require very few parameters and low computational resources to provide an adequate representation of stochastic time series. Two approaches are used in this paper to estimate the parameters that constitute the proposed multiplicative ARIM Amodel: a frequentist and a Bayesian approach. Advantages and disadvantages of both methods are compared by simulating a centralized self-healing scheme of a real EDS that uses the forecasts to deploy a robust restoration plan. Results show that the proposed seasonal ARIMA model is a fast, precise, straightforward, and adaptable load forecasting method, suitable for OOP of highly supervised EDS. (AU)

Processo FAPESP: 17/02196-0 - Estimação estocástica de demanda máxima a ser restaurada pelo sistema de self-healing: uma abordagem frequentista e Bayesiana
Beneficiário:Juan Camilo Lopez Amezquita
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado