Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Numerical solution of the Giesekus model for incompressible free surface flows without solvent viscosity

Texto completo
Autor(es):
Tome, M. F. [1] ; Araujo, M. T. [1] ; Evans, J. D. [2] ; McKee, S. [3]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Dept Appl Math & Stat, Sao Paulo - Brazil
[2] Univ Bath, Dept Math, Bath, Avon - England
[3] Univ Strathclyde, Dept Math & Stat, Glasgow, Lanark - Scotland
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: Journal of Non-Newtonian Fluid Mechanics; v. 263, p. 104-119, JAN 2019.
Citações Web of Science: 1
Resumo

We present a numerical method for solving the Giesekus model without solvent viscosity. This paper is concerned with incompressible two-dimensional free surface flows and employs the finite difference method to solve the governing equations. The methodology involves solving the momentum equation using the implicit Euler scheme and an implicit technique for computing the pressure condition on the free surface. The nonlinear Giesekus constitutive equation is computed by a second order Runge-Kutta method. A novel analytic solution for channel flow is developed and is used to verify the numerical technique presented herein. Mesh refinement studies establish the convergence of the method for complex free surface flows. To demonstrate that the technique can deal with complicated free surface flows, the time-dependent flow produced by a fluid jet flowing onto a rigid surface is simulated and the influence of the parameter a on the jet buckling phenomenon is investigated. In addition, the simulation of the extrudate swell of a Giesekus fluid was carried out and the effect of the parameter alpha on the flow was similarly examined. (AU)

Processo FAPESP: 15/50094-7 - Asymptotics and simulation of complex fluids
Beneficiário:José Alberto Cuminato
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs