Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Bayesian estimation of a flexible bifactor generalized partial credit model to survey data

Texto completo
Autor(es):
da Silva, Marcelo A. [1, 2] ; Huggins-Manley, Anne C. [3] ; Mazzon, Jose A. [4] ; Bazan, Jorge L. [5]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Fed Sao Carlos, Sao Carlos, SP - Brazil
[2] Univ Sao Paulo, Interinst Grad Program Stat, Sao Carlos, SP - Brazil
[3] Univ Florida, Coll Educ, Gainesville, FL - USA
[4] Univ Sao Paulo, Fac Econ Adm & Contabilidade, Sao Paulo - Brazil
[5] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Sao Paulo - Brazil
Número total de Afiliações: 5
Tipo de documento: Artigo Científico
Fonte: Journal of Applied Statistics; v. 46, n. 13, p. 1-16, MAR 2019.
Citações Web of Science: 0
Resumo

Item response theory (IRT) models provide an important contribution in the analysis of polytomous items, such as Likert scale items in survey data. We propose a bifactor generalized partial credit model (bifac-GPC model) with flexible link functions - probit, logit and complementary log-log - for use in analysis of ordered polytomous item scale data. In order to estimate the parameters of the proposed model, we use a Bayesian approach through the NUTS algorithm and show the advantages of implementing IRT models through the Stan language. We present an application to marketing scale data. Specifically, we apply the model to a dataset of non-users of a mobile banking service in order to highlight the advantages of this model. The results show important managerial implications resulting from consumer perceptions. We provide a discussion of the methodology for this type of data and extensions. Codes are available for practitioners and researchers to replicate the application. (AU)

Processo FAPESP: 17/15452-5 - Novos modelos de regressão para dados com resposta binária e/ou limitada
Beneficiário:Jorge Luis Bazan Guzman
Modalidade de apoio: Bolsas no Exterior - Pesquisa