| Texto completo | |
| Autor(es): |
Número total de Autores: 2
|
| Afiliação do(s) autor(es): | [1] UNESP Sao Paulo State Univ, Dept Appl Math, Biosci Languages & Exact Sci Inst, Sao Paulo - Brazil
Número total de Afiliações: 1
|
| Tipo de documento: | Artigo Científico |
| Fonte: | NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION; v. 40, n. 8, p. 867-887, JUN 11 2019. |
| Citações Web of Science: | 0 |
| Resumo | |
It is well-known in optimal control theory that the maximum principle, in general, furnishes only necessary optimality conditions for an admissible process to be an optimal one. It is also well-known that if a process satisfies the maximum principle in a problem with convex data, the maximum principle turns to be likewise a sufficient condition. Here an invexity type condition for state constrained optimal control problems is defined and shown to be a sufficient optimality condition. Further, it is demonstrated that all optimal control problems where all extremal processes are optimal necessarily obey this invexity condition. Thus optimal control problems which satisfy such a condition constitute the most general class of problems where the maximum principle becomes automatically a set of sufficient optimality conditions. (AU) | |
| Processo FAPESP: | 16/03540-4 - Condições de Qualificação em Controle Ótimo |
| Beneficiário: | Valeriano Antunes de Oliveira |
| Modalidade de apoio: | Auxílio à Pesquisa - Regular |
| Processo FAPESP: | 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria |
| Beneficiário: | Francisco Louzada Neto |
| Modalidade de apoio: | Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs |