Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Bayesian semiparametric modeling for HIV longitudinal data with censoring and skewness

Texto completo
Autor(es):
Castro, Luis M. [1] ; Wang, Wan-Lun [2] ; Lachos, Victor H. [3] ; de Carvalho, Vanda Inacio [4] ; Bayes, Cristian L. [5]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Pontificia Univ Catolica Chile, Dept Stat, Casilla 306, Correo 22, Santiago - Chile
[2] Feng Chia Univ, Dept Stat, Grad Inst Stat & Actuarial Sci, Taichung - Taiwan
[3] Univ Connecticut, Dept Stat, Storrs, CT 06269 - USA
[4] Univ Edinburgh, Sch Math, Edinburgh, Midlothian - Scotland
[5] Pontificia Univ Catolica Peru, Dept Sci, Lima - Peru
Número total de Afiliações: 5
Tipo de documento: Artigo Científico
Fonte: STATISTICAL METHODS IN MEDICAL RESEARCH; v. 28, n. 5, p. 1457-1476, MAY 2019.
Citações Web of Science: 1
Resumo

In biomedical studies, the analysis of longitudinal data based on Gaussian assumptions is common practice. Nevertheless, more often than not, the observed responses are naturally skewed, rendering the use of symmetric mixed effects models inadequate. In addition, it is also common in clinical assays that the patient's responses are subject to some upper and/or lower quantification limit, depending on the diagnostic assays used for their detection. Furthermore, responses may also often present a nonlinear relation with some covariates, such as time. To address the aforementioned three issues, we consider a Bayesian semiparametric longitudinal censored model based on a combination of splines, wavelets, and the skew-normal distribution. Specifically, we focus on the use of splines to approximate the general mean, wavelets for modeling the individual subject trajectories, and on the skew-normal distribution for modeling the random effects. The newly developed method is illustrated through simulated data and real data concerning AIDS/HIV viral loads. (AU)

Processo FAPESP: 14/02938-9 - Estimação e diagnóstico em modelos de efeitos mistos para dados censurados usando misturas de escala skew-normal
Beneficiário:Víctor Hugo Lachos Dávila
Modalidade de apoio: Auxílio à Pesquisa - Regular