Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Numerical solution of the Ericksen-Leslie model for liquid crystalline polymers free surface flows

Texto completo
Autor(es):
Cruz, Pedro A. [1] ; Tome, Murilo F. [2] ; McKee, Sean [3] ; Stewart, Iain W. [4]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Fed Univ Tocantins, Sci & Biotechnol, Gurupi, TO - Brazil
[2] Univ Sao Paulo, Dept Appl Math & Stat, BR-13560970 Sao Carlos, SP - Brazil
[3] Univ Strathclyde, Dept Math & Stat, Glasgow, Lanark - Scotland
[4] Univ Strathclyde, Fac Sci, Glasgow, Lanark - Scotland
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: Journal of Non-Newtonian Fluid Mechanics; v. 268, p. 30-45, JUN 2019.
Citações Web of Science: 0
Resumo

In this paper we present a finite difference method on a staggered grid for solving two-dimensional free surface flows of liquid crystalline polymers governed by the Ericksen-Leslie dynamic equations. The numerical technique is based on a projection method and employs Cartesian coordinates. The technique solves the governing equations using primitive variables for velocity, pressure, extra-stress tensor and the director. These equations are nonlinear partial differential equations consisting of the mass conservation equation and the balance laws of linear and angular momentum. Code verification and convergence estimates are effected by solving a flow problem on 5 different meshes. Two free surface problems are tackled: A jet impinging on a flat surface and injection molding. In the first case the buckling phenomenon is examined and shown to be highly dependent on the elasticity of the fluid. In the second case, injection molding of two differently shaped containers is carried out and the director is shown to be strongly dependent on its orientation at the boundaries. (AU)

Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:José Alberto Cuminato
Linha de fomento: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs