Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A framework for speaker retrieval and identification through unsupervised learning

Texto completo
Autor(es):
Campos, Victor de Abreu [1] ; Guimaraes Pedronette, Daniel Carlos [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] State Univ Sao Paulo, UNESP, Dept Stat Appl Math & Comp, Rio Claro - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: COMPUTER SPEECH AND LANGUAGE; v. 58, p. 153-174, NOV 2019.
Citações Web of Science: 0
Resumo

Speaker recognition is a task of remarkable relevance, with applications in diversified domains. Recently, mainly due to the facilities in audio-visual content acquisition, the capacity of analyzing growing datasets independent of labeled data has become a crucial advantage. This paper presents a speaker recognition approach based on recent unsupervised learning methods, which do not require any labeled data or user intervention. The approach is organized in terms of a framework which exploits a rank-based formulation. The similarity information defined by speaker modeling techniques is encoded in ranked lists, which are used as input by the unsupervised learning algorithms. Vector quantization, Gaussian mixture models and i-vectors are employed as modeling techniques, while the algorithms RL-Sim and ReckNN are used for unsupervised learning tasks. The framework was experimentally evaluated on query-by-example speaker retrieval and speaker identification tasks, both on clean and noisy speech recordings. An experimental evaluation was conducted on three public datasets, different languages, and recordings conditions. Effectiveness gains up to +56% on retrieval measures were obtained through the use of unsupervised learning algorithms over traditional speaker recognition techniques. (C) 2019 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 17/25908-6 - Aprendizado fracamente supervisionado para análise de vídeos no domínio comprimido em tarefas de recuperação e classificação para alertas visuais
Beneficiário:João Paulo Papa
Linha de fomento: Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE
Processo FAPESP: 15/07934-4 - Identificação automática de locutor utilizando métodos de aprendizado não-supervisionado
Beneficiário:Victor de Abreu Campos
Linha de fomento: Bolsas no Brasil - Mestrado
Processo FAPESP: 18/15597-6 - Aplicação e investigação de métodos de aprendizado não-supervisionado em tarefas de recuperação e classificação
Beneficiário:Daniel Carlos Guimarães Pedronette
Linha de fomento: Auxílio à Pesquisa - Apoio a Jovens Pesquisadores - Fase 2