Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Electrochemical sensors based on biomimetic magnetic molecularly imprinted polymer for selective quantification of methyl green in environmental samples

Texto completo
Autor(es):
Khan, Sabir ; Wong, Ademar ; Boldrin Zanoni, Maria Valnice ; Taboada Sotomayor, Maria Del Pilar [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Estadual Paulista UNESP, Dept Quim Analit, Inst Quim, Araraquara, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: Materials Science & Engineering C-Materials for Biological Applications; v. 103, OCT 2019.
Citações Web of Science: 2
Resumo

A new biomimetic sensor was prepared on carbon paste with magnetic molecularly imprinted polymer (mag-MIP) for sensitive and selective detection of methyl green dye. The mag-MIP was synthesized using a functional monomer that was selected before by computational simulation. A mag-NIP (magnetic non-imprinted polymer) control material was also prepared for comparative purposes. Modeling adsorption studied revealed that the dye polymer interface followed pseudo-first order kinetics and that maximum adsorption (Q(m)) of the dye on mag-MIP was 3.13 mg g(-1), while the value for mag-NIP was 1.58 mg g(-1). The selective material was used as a sensing spot in fabrication of an electrochemical sensor based on modified carbon paste. For electrochemical analysis, the best achievement of the sensor was acquire by tack together a paste with 6.7% (w/w) of mag-MIP and using square-wave adsorptive anodic stripping voltammetry (SWAdASV) in 0.1 mol L-1 phosphate buffer (pH 7.0), with an applied potential (E-appl) of 0.3 V vs. Ag vertical bar AgClsat during an adsorption time (T-ads) of 120 s. The results were obtained under optimized conditions in which sensor provided a linear concentration range of methyl green from 9.9 x 10(-8) to 1.8 x 10(-6) mol L-1, with a limit of detection (LOD) of 1.0 x 10(-8) mol L-1 and a satisfactory relative standard deviation (RSD) of 4.3% (n = 15). The proposed sensor was applying using two spiked river water samples, obtaining recoveries ranging from 93% to 103%. The proposed method exhibits excellent precision also high reliability and proved to be an alternative method for the quantification of methyl green in real samples. (AU)

Processo FAPESP: 14/50945-4 - INCT 2014: Instituto Nacional de Tecnologias Alternativas para Detecção, Avaliação Toxicológica e Remoção de Micropoluentes e Radioativos
Beneficiário:Maria Valnice Boldrin
Modalidade de apoio: Auxílio à Pesquisa - Temático