Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Stochastic quantization of a self-interacting nonminimal scalar field in semiclassical gravity

Texto completo
Autor(es):
dos Reis, Eduardo Antonio [1] ; Krein, Gastao [2] ; de Paula Netto, Tiberio [3] ; Shapiro, Ilya L. [1, 4, 5]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Fed Juiz de Fora, ICE, Dept Fis, BR-36036330 Juiz De Fora, MG - Brazil
[2] Univ Estadual Paulista, Inst Fis Teor, Rua Dr Bento Teobaldo Ferraz, 271 Bloco 2, BR-01140070 Sao Paulo, SP - Brazil
[3] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055 - Peoples R China
[4] Tomsk State Pedag Univ, Dept Theoret Phys, Tomsk 634061 - Russia
[5] Natl Res Tomsk State Univ, Tomsk 634050 - Russia
Número total de Afiliações: 5
Tipo de documento: Artigo Científico
Fonte: Physics Letters B; v. 798, NOV 10 2019.
Citações Web of Science: 0
Resumo

We employ stochastic quantization for a self-interacting nonminimal massive scalar field in curved spacetime. The covariant background field method and local momentum space representation are used to obtain the Euclidean correlation function and evaluate multi-loop quantum corrections through simultaneous expansions in the curvature tensor and its covariant derivatives and in the noise fields. The stochastic correlation function for a quartic self-interaction reproduces the well-known one-loop result by Bunch and Parker and is used to construct the effective potential in curved spacetime in an arbitrary dimension D up to the first order in curvature. Furthermore, we present a sample of numerical simulations for D = 3 in the first order in curvature. We consider the model with spontaneous symmetry breaking and obtain fully nonperturbative solutions for the vacuum expectation value of the scalar field and compare them with one- and two-loop solutions. (C) 2019 The Authors. Published by Elsevier B.V. (AU)

Processo FAPESP: 13/01907-0 - Centro de Pesquisa e Análise de São Paulo
Beneficiário:Sergio Ferraz Novaes
Modalidade de apoio: Auxílio à Pesquisa - Temático