Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Low-Complexity Feature Stochastic Gradient Algorithm for Block-Lowpass Systems

Texto completo
Autor(es):
Yazdanpanah, Hamed [1] ; Diniz, Paulo S. R. [2] ; Lima, Markus V. S. [2]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Math & Stat, Dept Comp Sci, BR-05508090 Sao Paulo, SP - Brazil
[2] Univ Fed Rio de Janeiro, COPPE, DEL DEE Poli Program Elect Engn, BR-68504 Rio De Janeiro - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: IEEE ACCESS; v. 7, p. 141587-141593, 2019.
Citações Web of Science: 0
Resumo

New approaches have been proposed to detect and exploit sparsity in adaptive systems. However, the sparsity is not always explicit among the system coefficients, thus requiring some tools to reveal it. By means of the so-called feature function, we propose the low-complexity feature stochastic gradient (LF-SG) algorithm to exploit hidden sparsity. The proposed algorithm aims at reducing the computational load of the learning process, as compared to the least-mean-square (LMS) algorithm. We focus on block-lowpass systems, but the proposed approach can easily be adapted to exploit other kinds of features of the unknown system, e.g., highpass and bandpass characteristics. Then, we analyze some properties of the LF-SG algorithm, namely its steady-state mean squared error (MSE), its bias, and the choice of the step-size parameter. Simulation results illustrate the competitive MSE performance of the LF-SG in comparison with the LMS, but the former algorithm requires much fewer multiplication operations to identify lowpass systems. For instance, to identify a measured room impulse response, the LF-SG algorithm realized less than half of the multiplication operations required by the LMS algorithm. (AU)

Processo FAPESP: 15/22308-2 - Representações intermediárias em Ciência Computacional para descoberta de conhecimento
Beneficiário:Roberto Marcondes Cesar Junior
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 19/06280-1 - Integração, transformação, aumento de dados e controle de qualidade para representações intermediárias
Beneficiário:Hamed Yazdanpanah
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado