Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Asymmetrical voltage response in resonant neurons shaped by nonlinearities

Texto completo
Autor(es):
Pena, R. F. O. [1, 2, 3, 4] ; Lima, V. [2] ; Shimoura, R. O. [2] ; Ceballos, C. C. [5, 2] ; Rotstein, H. G. [6, 1, 3, 4, 7] ; Roque, A. C. [2]
Número total de Autores: 6
Afiliação do(s) autor(es):
[1] Rutgers State Univ, Newark, NJ 07102 - USA
[2] Univ Sao Paulo, Sch Philosophy Sci & Letters Ribeirao Preto, Dept Phys, BR-14040901 Ribeirao Preto - Brazil
[3] New Jersey Inst Technol, Federated Dept Biol Sci, Newark, NJ 07102 - USA
[4] New Jersey Inst Technol, Inst Brain & Neurosci Res, Newark, NJ 07102 - USA
[5] Univ Sao Paulo, Sch Med Ribeirao Preto, Dept Physiol, BR-14049900 Ribeirao Preto - Brazil
[6] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF - Argentina
[7] Rutgers State Univ, Behav Neurosci BNS Program, Grad Fac, Newark, NJ - USA
Número total de Afiliações: 7
Tipo de documento: Artigo Científico
Fonte: Chaos; v. 29, n. 10 OCT 2019.
Citações Web of Science: 0
Resumo

The conventional impedance profile of a neuron can identify the presence of resonance and other properties of the neuronal response to oscillatory inputs, such as nonlinear response amplifications, but it cannot distinguish other nonlinear properties such as asymmetries in the shape of the voltage response envelope. Experimental observations have shown that the response of neurons to oscillatory inputs preferentially enhances either the upper or lower part of the voltage envelope in different frequency bands. These asymmetric voltage responses arise in a neuron model when it is submitted to high enough amplitude oscillatory currents of variable frequencies. We show how the nonlinearities associated to different ionic currents or present in the model as captured by its voltage equation lead to asymmetrical response and how high amplitude oscillatory currents emphasize this response. We propose a geometrical explanation for the phenomenon where asymmetries result not only from nonlinearities in their activation curves but also from nonlinearites captured by the nullclines in the phase-plane diagram and from the system's time-scale separation. In addition, we identify an unexpected frequency-dependent pattern which develops in the gating variables of these currents and is a product of strong nonlinearities in the system as we show by controlling such behavior by manipulating the activation curve parameters. The results reported in this paper shed light on the ionic mechanisms by which brain embedded neurons process oscillatory information. Published under license by AIP Publishing. (AU)

Processo FAPESP: 15/50122-0 - Fenômenos dinâmicos em redes complexas: fundamentos e aplicações
Beneficiário:Elbert Einstein Nehrer Macau
Linha de fomento: Auxílio à Pesquisa - Temático
Processo FAPESP: 17/05874-0 - Modelos de redes neurais com neurônios estocásticos e diferentes topologias: construção e análise
Beneficiário:Vinícius Lima Cordeiro
Linha de fomento: Bolsas no Brasil - Mestrado
Processo FAPESP: 13/07699-0 - Centro de Pesquisa, Inovação e Difusão em Neuromatemática - NeuroMat
Beneficiário:Jefferson Antonio Galves
Linha de fomento: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 13/25667-8 - Mecanismos de propagação de atividade epileptiforme em um modelo cortical de grande porte
Beneficiário:Rodrigo Felipe de Oliveira Pena
Linha de fomento: Bolsas no Brasil - Doutorado Direto