| Texto completo | |
| Autor(es): |
Número total de Autores: 3
|
| Afiliação do(s) autor(es): | [1] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, SP - Brazil
[2] Ecole Polytech Fed Lausanne, Dept Math, CH-1015 Lausanne - Switzerland
[3] Univ Fed Rio de Janeiro, Inst Matemat, Rio De Janeiro, RJ - Brazil
Número total de Afiliações: 3
|
| Tipo de documento: | Artigo Científico |
| Fonte: | Stochastic Processes and their Applications; v. 130, n. 2, p. 1103-1118, FEB 2020. |
| Citações Web of Science: | 0 |
| Resumo | |
We continue the study of renewal contact processes initiated in a companion paper, where we showed that if the tail of the interarrival distribution mu is heavier than t(-alpha) for some alpha < 1 (plus auxiliary regularity conditions) then the critical value vanishes. In this paper we show that if mu has decreasing hazard rate and tail bounded by t(-alpha) with alpha > 1, then the critical value is positive in the one-dimensional case. A more robust and much simpler argument shows that the critical value is positive in any dimension whenever the interarrival distribution has a finite second moment. (C) 2019 Published by Elsevier B.V. (AU) | |
| Processo FAPESP: | 17/10555-0 - Modelagem estocástica de sistemas interagentes |
| Beneficiário: | Fabio Prates Machado |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |