Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Eyes in the Skies: A Data-Driven Fusion Approach to Identifying Drug Crops From Remote Sensing Images

Texto completo
Autor(es):
Ferreira, Anselmo [1, 2] ; Felipussi, Siovani C. [3] ; Pires, Ramon [4] ; Avila, Sandra [4] ; Santos, Geise [4] ; Lambert, Jorge [5, 6] ; Huang, Jiwu [1, 2] ; Rocha, Anderson [4]
Número total de Autores: 8
Afiliação do(s) autor(es):
[1] Shenzhen Univ, Coll Informat Engn, Guangdong Key Lab Intelligent Informat Proc, Shenzhen Key Lab Media Secur, Shenzhen 518060 - Peoples R China
[2] Shenzhen Univ, Natl Engn Lab Big Data Syst Comp Technol, Shenzhen 518060 - Peoples R China
[3] Univ Fed Sao Carlos, Dept Comp Sci, BR-13565905 Sao Carlos - Brazil
[4] Univ Campinas Unicamp, Inst Comp, BR-13083852 Sao Paulo - Brazil
[5] Brazilian Fed Police, Natl Inst Criminol, BR-7061020 Brasilia, DF - Brazil
[6] Univ Brasilia, Dept Mechatron Syst, BR-70910900 Brasilia, DF - Brazil
Número total de Afiliações: 6
Tipo de documento: Artigo Científico
Fonte: IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING; v. 12, n. 12, p. 4773-4786, DEC 2019.
Citações Web of Science: 0
Resumo

Automatic classification of sensitive content in remote sensing images, such as drug crop sites, is a promising task, as it can aid law-enforcement institutions in fighting illegal drug dealers worldwide, while, at the same time, it can help monitor legalized crops in countries that regulate them. However, existing art on detecting drug crops from remote sensing images is limited in some key factors, not taking full advantage of the available hyperspectral information for analysis. In this paper, departing from these methods, we propose a data-driven ensemble method to detect drug sites from remote sensing images. Our method comprises different convolutional neural network architectures applied to distinct image representations, which are able to represent complementary characterizations of such crops. To validate the proposed approach, we considered in our experiments a dataset containing Cannabis Sativa crops, spotted by police operations in a Brazilian region called the Marijuana Polygon. The results in this dataset show that our ensemble approach outperforms other data-driven and feature-engineering methods in a real-world experimental setup, in which unbalanced samples are present and acquisitions from different places in the same region are used for training and testing the methods, highlighting the promising use of this solution to aid police operations in detecting and collecting evidence of such sensitive content properly. (AU)

Processo FAPESP: 17/12646-3 - Déjà vu: coerência temporal, espacial e de caracterização de dados heterogêneos para análise e interpretação de integridade
Beneficiário:Anderson de Rezende Rocha
Modalidade de apoio: Auxílio à Pesquisa - Temático